Increased patellofemoral pressure after TKA: an in vitro study.
Knee Surgery, Sports Traumatology, Arthroscopy: 2014, 22 (3): 500-8Ulf G Leichtle, Markus Wünschel, Carmen I Leichtle, Otto Müller, Philipp Kohler, Nikolaus Wülker, Andrea Lorenz
PURPOSE: Considering the discrepant results of the recent biomechanical studies, the purpose of this study was to simulate dynamic muscle-loaded knee flexion with a large number of specimens and to analyse the influence of total knee arthroplasty (TKA) without and with patellar resurfacing on the patellofemoral pressure distribution.
METHODS: In 22 cadaver knee specimens, dynamic muscle-loaded knee flexion (15°-90°) was simulated with a specially developed knee simulator applying variable muscle forces on the quadriceps muscles to maintain a constant ankle force. Patellofemoral pressures were measured with flexible, pressure-sensitive sensor foils (TEKSCAN) and patellofemoral offset with an ultrasound motion-tracking system (ZEBRIS). Measurements were taken on the native knee, after total knee arthroplasty and after patellar resurfacing. Correct positioning of the patellar implant was examined radiologically.
RESULTS: The maximal patellofemoral peak pressure partly increased from the native knee to the knee with TKA with intact patella (35°-90°, p < 0.012) and highly increased (twofold to threefold) after patellar resurfacing (20°-90°, p < 0.001). Concurrently, the patellofemoral contact area decreased and changed from a wide area distribution in the native knee, to a punctate area after TKA with intact patella and a line-shaped area after patellar resurfacing. Patellar resurfacing led to no increase in patellar thickness and patellofemoral offset.
CONCLUSIONS: Despite correct implantation of the patellar implants and largely unchanged patellofemoral offset, a highly significant increase in pressure after patellar resurfacing was measured. Therefore, from a biomechanical point of view, the preservation of the native patella seems reasonable if there is no higher grade patellar cartilage damage.
No hay comentarios:
Publicar un comentario